B757 ENGINEERING CONTINUATION TRAINING

Q3 & Q4 2015

FOR REFERENCE ONLY
Contents

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DHL Air Procedures Review</td>
</tr>
<tr>
<td>2</td>
<td>EATL Procedures Review</td>
</tr>
<tr>
<td>3</td>
<td>ETCS</td>
</tr>
<tr>
<td>4</td>
<td>757 Airworthiness Directives</td>
</tr>
<tr>
<td>5</td>
<td>757 UK Maintenance Related MOR</td>
</tr>
<tr>
<td>6</td>
<td>Introduction of PW2000 B757s to DHL fleet with new Cargo Door Installation</td>
</tr>
<tr>
<td>7</td>
<td>ALTITUDE GLOBAL LTD - ENGINEERING BULLETIN - B757-32-001 (REMINDER)</td>
</tr>
<tr>
<td>8</td>
<td>CAA Safety Notice - Fuel Shutoff Valves</td>
</tr>
<tr>
<td>9</td>
<td>New Cargo Door Bleed Procedures</td>
</tr>
</tbody>
</table>
1 DHL Air Procedures Review

For clear and precise instructions on how DHL Air require their Technical Logs to be completed, refer to the following!

See DHL Air DAEP CD for DAEP No 6. Tech log completion

See DHL Air DAEP CD for DAEP No 8 (General Section) Deferred Defect

See DHL Air DAEP CD for DAEP No. 14 for AWOPS operations

See DHL Air DAEP CD for DAEP No. 15 for RVSM operations.

DAEP’s: Available on CD
B757 Maintenance Tips: Available on TechCom

2 EATL Procedures Review

EATL CAME Part 1.1 Aircraft Technical Log Utilization and MEL Application.

See EATL CAME 1.16.2 for RVSM operations

See EATL CAME 1.16.1 for All Weather Operations
3 B757 ETC & AENs

1. Background
 This ETC provides information regarding testing and programing of ELTs.

2. Current Situation
 ELT Test
 To minimize the number of false alerts the operator of the satellite system (Copas-Sanset), the National Search and Rescue Office and the LBA published the following restrictions for the test:
 - Testing on the 121.5 MHz frequency is allowed only during the first 5 minutes of any hour but limited to 10 seconds per ELT.
 - Testing on the 406 MHz frequency is allowed only in the self-test mode with a non-distressing signal (the ELTs installed in the B757 and A622 fulfill this self-test requirement). Neither the local ATC nor the SAR office can approve a transmission of a distressing signal of an ELT which leads in a SAR mission!

ELT Coding
 Each ELT in the B757 and the A622 fleet has a unique HEX-code.

3. Discussion
 N/A.

4. Conclusion:
 ELT Test
 All ELTs have a built-in self-test to verify proper function. During the self-test the ELT transmits a signal on 121.5 and 406 MHz. The A06V2 transmits a 406 MHz un-modulated signal during the self-test. The ADT406 transmits one burst modulated with inverted frame synchronization. The signal transmitted during the self-test on the 406 MHz frequency is a non-distressing signal and will not generate an alert! But keep in mind after completion of the self-test and a time delay the ELT switches into normal operation and transmits a regular distress signal which causes an alert!
 - Do not run the self-test for longer than 50 seconds!
 - The transmission of real distress signal is forbidden.
 - Switch the ELT to OFF or ARM within 30 seconds after the self-test.

 The test transmission on the 121.5 MHz can be heard on the VHF radio.

 CAUTION: 50 SECONDS AFTER ACTIVATION THE ELT WILL TRANSMIT REAL DISTRESS SIGNALS ON 121.5, 243 AND 406 MHz. SWITCH the ELT TO OFF BEFORE!

 NOTE: In the event of an untimely beacon activation, shut down the beacon. Immediately inform the MOC Tel +4934144991234 or the duty manager Tel +4934144991273 about the ELT code and aircraft tail sign. The MOC or duty manager will contact the local SAR office Tel +49251135757 and local ATC Tel +493414687371.

 B757 ELT installed on flight deck:
 Refer to "B757 manual supplement 25-63-51 CEIS TM User Handbook A06V2 chapter 5D(2) Self test on the beacon."
 1. Check that flexible antenna is connected on antenna socket.
 2. Place the beacon's ARMED/OFF/ON toggle switch in ON position
 3. Check that indicator light comes on and the beacon’s buzzer sounds for at least 10 seconds.
 4. Return the ON/OFF/AUTO switch to the OFF position.
ELT Test and Hex Codes

B757 ELT installed in cargo compartment:
Refer to "B757 manual supplements 25-63-51 S60160-IST-C-SRB chapter 3.4.2 functional tests".

The ELT beacon shall be in AUTO position. If not, the RCP will not operate.

1. On the radio management panel, set the frequency to 121.5 MHz.
2. Adjust the volume of the cockpit loudspeaker, so that you can hear the signal clearly.
3. On the RCP, make sure that the ARMED/ON switch is set to ARMED.
4. On the beacon, make sure that the AUTO/OFF/ON toggle switch is set to AUTO.
5. Push the Test/Reset Button on the RCP for less than 2 sec.
6. After 4 sec, the ON indicator light flashes one time. Then after 6 sec, the ON indicator comes on continuously for 10 seconds.

NOTE: If the LED comes on intermittently the self-test failed. Refer to Users handbook to determine the failure.

A622 (D-AEAB up to D-AEAT) ELT installed in courier compartment:
Refer to "EADS A300-600 supplements AMM 25-65 config. 01".
Refer to "A300-600 EAT manual supplements 25-65-31 ELTA User Handbook ADT406AP chapter 5D(1) self-test on the beacon".

NOTE: The self-test process shall not be interrupted. If the process is not completed for any reason perform a new complete self-test.

1. Place the beacon's ARMED/OFF/ON toggle switch in ON position.
2. After two short blinks and a delay of 3 seconds, check that the indicator light comes ON and the beacon's buzzer sounds for 6 seconds. The ELT should blink at a rate of 1 Hz because no external antenna is installed. After a brief blink the self-test report is displayed:
 - 10 s permanent illumination of the indicator light for correct operation,
 - 10 s blinking condition of the indicator light for failure detection.
 - The blinking rate indicates the failure source detection as follow:
 - 1 Hz blinking Ext. Antenna connection failure or signal identification missing,
 - 2 Hz blinking ELT power failure (UHF and or VHF)
 - 4 Hz blinking ELT Check Sum failure (software problem)

 Then the beacon enters into a waiting condition for 30 seconds (Rate: 1.75 sec. ON; 0.25 sec. OFF).
3. During this state return the switch to the ARMED position.

A622 (D-AEAA and D-AZNO) ELT installed in cargo compartment:
Refer to "Airbus IPC FIN 110MX", (normal Airbus documents, no supplement)
Refer to "Airbus AMM 25-65-00/501 OPS test (normal Airbus documents, no supplement)
Do an Operational test of the ELT system by manual activation as per AMM 25-65-00/501 3B(1).
Do an Functional test of the ELT system as per AMM 25-65-00/501 3B(2).

A622 (EL-557) ELT installed in courier compartment:
Refer to "EADS A300-600 supplements AMM 25-65 config. 01".
Refer to "A300-600 EAT manual supplements 25-65-31" The ELT beacon shall be in AUTO position. If not, the RCP will not operate.

7. On the radio management panel, set the frequency to 121.5 MHz.
8. Adjust the volume of the cockpit loudspeaker, so that you can hear the signal clearly.
9. On the RCP, make sure that the ARMED/ON switch is set to ARMED.
10. On the beacon, make sure that the AUTO/OFF/ON toggle switch is set to AUTO.
11. Push the Test/Reset Button on the RCP for less than 2 sec.
12. After 4 sec, the ON indicator light flashes one time. Then after 6 sec, the ON indicator comes on continuously for 10 seconds.

NOTE: If the LED comes on intermittently the self-test failed. Refer to Users handbook to determine the failure.
Engineering Technical Circular

ELT Test and Hex Codes

<table>
<thead>
<tr>
<th>ELT Coding</th>
<th>Hex Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fu Ant</td>
<td>hexadecimal</td>
<td>ELT antenna installed on upper fuselage?</td>
</tr>
<tr>
<td>RCP</td>
<td>Remote Control Panel in the cockpit overhead panel installed?</td>
<td></td>
</tr>
<tr>
<td>LOC</td>
<td>Location</td>
<td></td>
</tr>
<tr>
<td>CW</td>
<td>Cockpit wall</td>
<td></td>
</tr>
<tr>
<td>MC</td>
<td>Main Cargo Compartment</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>Courier Compartment shelf</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP</td>
<td>Automatic Portable</td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>Automatic Fixed</td>
<td></td>
</tr>
<tr>
<td>SW POSN</td>
<td>Switch position</td>
<td></td>
</tr>
<tr>
<td>Auto</td>
<td>G-force sensor active</td>
<td></td>
</tr>
<tr>
<td>Off</td>
<td>G-force sensor not working</td>
<td></td>
</tr>
<tr>
<td>User protocol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA24</td>
<td>Serialized Aviation (24 Bit Address, mode 'S') user protocol</td>
<td></td>
</tr>
<tr>
<td>AUP</td>
<td>Aviation (Identification Tail) user protocol</td>
<td></td>
</tr>
<tr>
<td>SAR</td>
<td>Search and Rescue Mission</td>
<td></td>
</tr>
<tr>
<td>EATL</td>
<td>EAT' Leipzig Engineering</td>
<td></td>
</tr>
</tbody>
</table>
ELT Test and Hex Codes

<table>
<thead>
<tr>
<th>REG</th>
<th>Mode S Address</th>
<th>Fu Ant</th>
<th>RCP</th>
<th>LOC</th>
<th>Hexcode</th>
<th>type</th>
<th>SW POSN</th>
<th>Programmed</th>
<th>with</th>
<th>on</th>
<th>where</th>
<th>Series</th>
<th>PN</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-AEAA</td>
<td>3CS421</td>
<td>yes</td>
<td>yes</td>
<td>MC</td>
<td>9B4DCF150840051</td>
<td>AF</td>
<td>Auto</td>
<td>SA24</td>
<td>Bracket 05N6089</td>
<td>EATL</td>
<td>A06V2</td>
<td>95N6088</td>
<td></td>
</tr>
<tr>
<td>D-AEAB</td>
<td>3CS422</td>
<td>no</td>
<td>no</td>
<td>CC</td>
<td>9B4DCF15088120D</td>
<td>AP</td>
<td>Auto</td>
<td>SA24</td>
<td>Dongle 05N62132</td>
<td>EATL</td>
<td>ADT406AP</td>
<td>01N65910</td>
<td></td>
</tr>
<tr>
<td>D-AEAC</td>
<td>3CS423</td>
<td>no</td>
<td>no</td>
<td>CC</td>
<td>9B4DCF1508C120D</td>
<td>AP</td>
<td>Auto</td>
<td>SA24</td>
<td>Dongle 05N62132</td>
<td>EATL</td>
<td>ADT406AP</td>
<td>01N65910</td>
<td></td>
</tr>
<tr>
<td>D-AEAD</td>
<td>3CS424</td>
<td>no</td>
<td>no</td>
<td>CC</td>
<td>9B4DCF15090120D</td>
<td>AP</td>
<td>Auto</td>
<td>SA24</td>
<td>Dongle 05N62132</td>
<td>EATL</td>
<td>ADT406AP</td>
<td>01N65910</td>
<td></td>
</tr>
<tr>
<td>D-AEAE</td>
<td>3CS425</td>
<td>no</td>
<td>no</td>
<td>CC</td>
<td>9B4DCF15094120D</td>
<td>AP</td>
<td>Auto</td>
<td>SA24</td>
<td>Dongle 05N62132</td>
<td>EATL</td>
<td>ADT406AP</td>
<td>01N65910</td>
<td></td>
</tr>
<tr>
<td>D-AEAF</td>
<td>3CS426</td>
<td>no</td>
<td>no</td>
<td>CC</td>
<td>9B4DCF15098120D</td>
<td>AP</td>
<td>Auto</td>
<td>SA24</td>
<td>Dongle 05N62132</td>
<td>EATL</td>
<td>ADT406AP</td>
<td>01N65910</td>
<td></td>
</tr>
<tr>
<td>D-AEAG</td>
<td>3CS427</td>
<td>no</td>
<td>no</td>
<td>CC</td>
<td>9B4DCF1509C120D</td>
<td>AP</td>
<td>Auto</td>
<td>SA24</td>
<td>Dongle 05N62132</td>
<td>EATL</td>
<td>ADT406AP</td>
<td>01N65910</td>
<td></td>
</tr>
<tr>
<td>D-AEAH</td>
<td>3CS428</td>
<td>no</td>
<td>no</td>
<td>CC</td>
<td>9B4DCF150A0120D</td>
<td>AP</td>
<td>Auto</td>
<td>SA24</td>
<td>Dongle 05N62132</td>
<td>EATL</td>
<td>ADT406AP</td>
<td>01N65910</td>
<td></td>
</tr>
<tr>
<td>D-AEAI</td>
<td>3CS429</td>
<td>no</td>
<td>no</td>
<td>CC</td>
<td>9B4DCF150A4120D</td>
<td>AP</td>
<td>Auto</td>
<td>SA24</td>
<td>Dongle 05N62132</td>
<td>EATL</td>
<td>ADT406AP</td>
<td>01N65910</td>
<td></td>
</tr>
<tr>
<td>D-AEAJ</td>
<td>3CS42A</td>
<td>no</td>
<td>no</td>
<td>CC</td>
<td>9B4DCF150A8120D</td>
<td>AP</td>
<td>Auto</td>
<td>SA24</td>
<td>Dongle 05N62132</td>
<td>EATL</td>
<td>ADT406AP</td>
<td>01N65910</td>
<td></td>
</tr>
<tr>
<td>D-AEAK</td>
<td>3CS42B</td>
<td>no</td>
<td>no</td>
<td>CC</td>
<td>9B4DCF150AC120D</td>
<td>AP</td>
<td>Auto</td>
<td>SA24</td>
<td>Dongle 05N62132</td>
<td>EATL</td>
<td>ADT406AP</td>
<td>01N65910</td>
<td></td>
</tr>
<tr>
<td>D-AEAL</td>
<td>3CS42C</td>
<td>no</td>
<td>no</td>
<td>CC</td>
<td>9B4DCF150B0120D</td>
<td>AP</td>
<td>Auto</td>
<td>SA24</td>
<td>Dongle 05N62132</td>
<td>EATL</td>
<td>ADT406AP</td>
<td>01N65910</td>
<td></td>
</tr>
<tr>
<td>D-AEAM</td>
<td>3CS42D</td>
<td>no</td>
<td>no</td>
<td>CC</td>
<td>9B4DCF150B4120D</td>
<td>AP</td>
<td>Auto</td>
<td>SA24</td>
<td>Dongle 05N62132</td>
<td>EATL</td>
<td>ADT406AP</td>
<td>01N65910</td>
<td></td>
</tr>
<tr>
<td>D-AEAN</td>
<td>3CS42E</td>
<td>no</td>
<td>no</td>
<td>CC</td>
<td>9B4DCF150B8120D</td>
<td>AP</td>
<td>Auto</td>
<td>SA24</td>
<td>Dongle 05N62132</td>
<td>EATL</td>
<td>ADT406AP</td>
<td>01N65910</td>
<td></td>
</tr>
<tr>
<td>D-AEOA</td>
<td>3CS42F</td>
<td>no</td>
<td>no</td>
<td>CC</td>
<td>9B4DCF150BC120D</td>
<td>AP</td>
<td>Auto</td>
<td>SA24</td>
<td>Dongle 05N62132</td>
<td>EATL</td>
<td>ADT406AP</td>
<td>01N65910</td>
<td></td>
</tr>
<tr>
<td>D-AEPB</td>
<td>3CS430</td>
<td>no</td>
<td>no</td>
<td>CC</td>
<td>9B4DCF150D0120D</td>
<td>AP</td>
<td>Auto</td>
<td>SA24</td>
<td>Dongle 05N62132</td>
<td>EATL</td>
<td>ADT406AP</td>
<td>01N65910</td>
<td></td>
</tr>
<tr>
<td>D-AEQA</td>
<td>3CS431</td>
<td>no</td>
<td>no</td>
<td>CC</td>
<td>9B4DCF150A4120D</td>
<td>AP</td>
<td>Auto</td>
<td>SA24</td>
<td>Dongle 05N62132</td>
<td>EATL</td>
<td>ADT406AP</td>
<td>01N65910</td>
<td></td>
</tr>
<tr>
<td>D-AERB</td>
<td>3CS432</td>
<td>no</td>
<td>no</td>
<td>CC</td>
<td>9B4DCF1508120D</td>
<td>AP</td>
<td>Auto</td>
<td>SA24</td>
<td>Dongle 05N62132</td>
<td>EATL</td>
<td>ADT406AP</td>
<td>01N65910</td>
<td></td>
</tr>
<tr>
<td>D-DEAS</td>
<td>3CS433</td>
<td>no</td>
<td>no</td>
<td>CC</td>
<td>9B4DCF150CC120D</td>
<td>AP</td>
<td>Auto</td>
<td>SA24</td>
<td>Dongle 05N62132</td>
<td>EATL</td>
<td>ADT406AP</td>
<td>01N65910</td>
<td></td>
</tr>
<tr>
<td>D-DEAT</td>
<td>3CS434</td>
<td>no</td>
<td>no</td>
<td>CC</td>
<td>9B4DCF150D0120D</td>
<td>AP</td>
<td>Auto</td>
<td>SA24</td>
<td>Dongle 05N62132</td>
<td>EATL</td>
<td>ADT406AP</td>
<td>01N65910</td>
<td></td>
</tr>
<tr>
<td>D-AZMO</td>
<td>3CS435</td>
<td>no</td>
<td>no</td>
<td>CC</td>
<td>9B4DCF1505120D</td>
<td>AP</td>
<td>Auto</td>
<td>SA24</td>
<td>Dongle 05N62132</td>
<td>EATL</td>
<td>ADT406AP</td>
<td>01N65910</td>
<td></td>
</tr>
<tr>
<td>EI-EXR</td>
<td>4CAA69</td>
<td>yes</td>
<td>yes</td>
<td>MC</td>
<td>9B4DCF88319E31</td>
<td>AF</td>
<td>Auto</td>
<td>SA24</td>
<td>Bracket 05N6889</td>
<td>EATL</td>
<td>A06V2</td>
<td>95N6888</td>
<td></td>
</tr>
<tr>
<td>EI-557</td>
<td></td>
<td>no</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td>Off</td>
<td>SA24</td>
<td>Bracket 05N6131</td>
<td>EATL</td>
<td>A06T</td>
<td>94N6576</td>
<td></td>
</tr>
</tbody>
</table>
ELT Test and Hex Codes

<table>
<thead>
<tr>
<th>REG</th>
<th>Mode S Address</th>
<th>Fu Ant</th>
<th>RCP</th>
<th>LOC</th>
<th>ELT Hexcode</th>
<th>type</th>
<th>SW POSN</th>
<th>Programmed</th>
<th>Series</th>
<th>PN</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-ALEA</td>
<td>3C70A1</td>
<td>no</td>
<td>no</td>
<td>CW</td>
<td>9B4DCF1C284051</td>
<td>AP</td>
<td>Off</td>
<td>SA24</td>
<td>Bracket 95N6089</td>
<td>EATL</td>
</tr>
<tr>
<td>D-ALEB</td>
<td>3C70A2</td>
<td>no</td>
<td>no</td>
<td>CW</td>
<td>9B4DCF1C288051</td>
<td>AP</td>
<td>Off</td>
<td>SA24</td>
<td>Bracket 95N6089</td>
<td>EATL</td>
</tr>
<tr>
<td>D-ALEC</td>
<td>3C70A3</td>
<td>no</td>
<td>no</td>
<td>CW</td>
<td>9B4DCF1C298051</td>
<td>AP</td>
<td>Off</td>
<td>SA24</td>
<td>Bracket 95N6089</td>
<td>EATL</td>
</tr>
<tr>
<td>D-ALED</td>
<td>3C70A4</td>
<td>no</td>
<td>no</td>
<td>CW</td>
<td>9B4DCF1C299051</td>
<td>AP</td>
<td>Off</td>
<td>SA24</td>
<td>Bracket 95N6089</td>
<td>EATL</td>
</tr>
<tr>
<td>D-ALEE</td>
<td>3C70A5</td>
<td>no</td>
<td>no</td>
<td>CW</td>
<td>9B4DCF1C294051</td>
<td>AP</td>
<td>Off</td>
<td>SA24</td>
<td>Bracket 95N6089</td>
<td>EATL</td>
</tr>
<tr>
<td>D-ALEF</td>
<td>3C70A6</td>
<td>no</td>
<td>no</td>
<td>CW</td>
<td>9B4DCF1C298051</td>
<td>AP</td>
<td>Off</td>
<td>SA24</td>
<td>Bracket 95N6089</td>
<td>EATL</td>
</tr>
<tr>
<td>D-ALEG</td>
<td>3C70A7</td>
<td>no</td>
<td>no</td>
<td>CW</td>
<td>9B4DCF1C293051</td>
<td>AP</td>
<td>Off</td>
<td>SA24</td>
<td>Bracket 95N6089</td>
<td>EATL</td>
</tr>
<tr>
<td>D-ALEH</td>
<td>3C70A8</td>
<td>no</td>
<td>no</td>
<td>CW</td>
<td>9B4DCF1C2A0051</td>
<td>AP</td>
<td>Off</td>
<td>SA24</td>
<td>Bracket 95N6089</td>
<td>EATL</td>
</tr>
<tr>
<td>D-ALEI</td>
<td>3C70A9</td>
<td>no</td>
<td>no</td>
<td>CW</td>
<td>9B4DCF1C2A051</td>
<td>AP</td>
<td>Off</td>
<td>SA24</td>
<td>Bracket 95N6089</td>
<td>EATL</td>
</tr>
<tr>
<td>D-ALEJ</td>
<td>3C70A0</td>
<td>no</td>
<td>no</td>
<td>CW</td>
<td>9B4DCF1C2A0051</td>
<td>AP</td>
<td>Off</td>
<td>SA24</td>
<td>Bracket 95N6089</td>
<td>EATL</td>
</tr>
<tr>
<td>D-ALEK</td>
<td>3C70AB</td>
<td>no</td>
<td>no</td>
<td>CW</td>
<td>9B4DCF1C2AC0051</td>
<td>AP</td>
<td>Off</td>
<td>SA24</td>
<td>Bracket 95N6089</td>
<td>EATL</td>
</tr>
<tr>
<td>Mode S Address</td>
<td>Fu Ant</td>
<td>decimal</td>
<td>LOC</td>
<td>RCP</td>
<td>Fu Ant</td>
<td>ELT</td>
<td>ELT Hacode</td>
<td>SW</td>
<td>POSN</td>
<td>with</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>---------</td>
<td>------</td>
<td>-----</td>
<td>--------</td>
<td>-----</td>
<td>------------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>REG</td>
<td></td>
</tr>
<tr>
<td>G-BKCI</td>
<td>no</td>
<td>41956716</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>00069426BCFEDF1</td>
<td>AP</td>
<td>Off</td>
<td>AUP</td>
<td>no</td>
</tr>
<tr>
<td>G-BKIF</td>
<td>no</td>
<td>41956903</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>00069426BCFEDF1</td>
<td>AP</td>
<td>Off</td>
<td>AUP</td>
<td>no</td>
</tr>
<tr>
<td>G-BKIG</td>
<td>no</td>
<td>41956718</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>00069426BCFEDF1</td>
<td>AP</td>
<td>Off</td>
<td>AUP</td>
<td>no</td>
</tr>
<tr>
<td>G-BKIK</td>
<td>no</td>
<td>41956726</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>00069426BCFEDF1</td>
<td>AP</td>
<td>Off</td>
<td>AUP</td>
<td>no</td>
</tr>
<tr>
<td>G-BKIKM</td>
<td>no</td>
<td>41956699</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>00069426BCFEDF1</td>
<td>AP</td>
<td>Off</td>
<td>AUP</td>
<td>no</td>
</tr>
<tr>
<td>G-BKIU</td>
<td>no</td>
<td>41956699</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>00069426BCFEDF1</td>
<td>AP</td>
<td>Off</td>
<td>AUP</td>
<td>no</td>
</tr>
<tr>
<td>G-BKIV</td>
<td>no</td>
<td>41956769</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>00069426BCFEDF1</td>
<td>AP</td>
<td>Off</td>
<td>AUP</td>
<td>no</td>
</tr>
<tr>
<td>G-BKV</td>
<td>no</td>
<td>41956798</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>00069426BCFEDF1</td>
<td>AP</td>
<td>Off</td>
<td>AUP</td>
<td>no</td>
</tr>
<tr>
<td>G-BKVJ</td>
<td>no</td>
<td>41956939</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>00069426BCFEDF1</td>
<td>AP</td>
<td>Off</td>
<td>AUP</td>
<td>no</td>
</tr>
<tr>
<td>G-BKVP</td>
<td>no</td>
<td>41956873</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>00069426BCFEDF1</td>
<td>AP</td>
<td>Off</td>
<td>AUP</td>
<td>no</td>
</tr>
<tr>
<td>G-BKVR</td>
<td>no</td>
<td>41956873</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>00069426BCFEDF1</td>
<td>AP</td>
<td>Off</td>
<td>AUP</td>
<td>no</td>
</tr>
<tr>
<td>G-BKVS</td>
<td>no</td>
<td>41956873</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>00069426BCFEDF1</td>
<td>AP</td>
<td>Off</td>
<td>AUP</td>
<td>no</td>
</tr>
<tr>
<td>G-BKVT</td>
<td>no</td>
<td>41956873</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>00069426BCFEDF1</td>
<td>AP</td>
<td>Off</td>
<td>AUP</td>
<td>no</td>
</tr>
<tr>
<td>G-BKVU</td>
<td>no</td>
<td>41956873</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>00069426BCFEDF1</td>
<td>AP</td>
<td>Off</td>
<td>AUP</td>
<td>no</td>
</tr>
<tr>
<td>G-BKOV</td>
<td>no</td>
<td>41956873</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>00069426BCFEDF1</td>
<td>AP</td>
<td>Off</td>
<td>AUP</td>
<td>no</td>
</tr>
</tbody>
</table>
ELT Test and Hex Codes

One label with the hexadecimal code must be attached to each ELT. On the 757's a similar label must be on the bracket. EAT Stores will produce a new label if needed. The label characteristics are:

- Label width: approx. 9mm
- Label length: approx. 40mm
- Label color: White
- Text color: Black

A reprogramming of the ELT is necessary if the code in the table above does not fit to the code in the aircraft. EAT Engineering has the necessary tools and will assist the programming if possible. The task cards mentioned in the references below show detailed procedures how to program an ELT.

- **A622 D-AEAB up to D-AEAT**: The “Activation/Identification module” of the A622 ELT contains the code. This module must always stay in the same aircraft if the ELT is replaced.

- **A622 D-AZMO**: The programming dongle of the ELT contains the code. This dongle must always stay in the same aircraft if the ELT is replaced.

- **B757SF+PF and A622 D-AEAA**: The bracket (attached to the wall) of the B757ELT contains the code. The code on the bracket and on the ELT must fit to the table above. The bracket of the 757 ELT transmits the code automatically to the installed ELT during installation procedure.

5. References

ELT Test
- Manual Supplements for B757 and A622
- German “NFL II 55/06”
- Copas-Sarsat “Handbook of beacon regulations”
- German “SAR Handbuch”
- "ELT A06V2" CMM 25-60-04 and User Handbook
- "ELT ADT406" CMM 25-60-10 and User Handbook

ELT Coding

EAT task card SIN-25-65-0002 “Programming of ELT A300-600”
EAT task card SIN-25-65-0004 “Programming of ELT A300-600 MSN 677 & 743”
EAT task card SIN-25-65-0005 “Programming of ELT A300-600 MSN 872”
EAT task card SIN-25-61-0001 "Programming of ELT B757"

Prepared by: Markus Kehrer
Position: Avionics Engineer
Date: 03.06.2015

Authorised by: Lars Remmers
Name: Engineering Manager
Date: 03.06.2015

Signature:

Digitally signed and approved in Q-Pulse
4 B757 Airworthiness Directives

Below is a listing of Airworthiness Directives issued over the last period:

EASA AD No.: 2014-0249R1

<table>
<thead>
<tr>
<th>ATA 05 72</th>
<th>Time Limits/Maintenance Checks –Engine Critical Parts – Reduction of Cyclic Life Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer(s)</td>
<td>Rolls-Royce plc (RR)</td>
</tr>
<tr>
<td>Applicability</td>
<td>RB211-535E4-37, RB211-535E4-B-37 and RB211-535E4-C-37 engines, all manufacturer serial numbers. These engines are known to be installed on, but not limited to, Boeing 757 aeroplanes.</td>
</tr>
<tr>
<td>Reason</td>
<td>An engineering analysis, carried out by RR, of the lives of critical parts of the RB211-535E4-37 engine, has resulted in reduced cyclic life limits for certain high pressure (HP) turbine discs. The reduced limits are published in the RR RB211-535E4-37 Time Limits Manual (TLM): 05-10-01-800-000, current Revision dated July 2014. Operation of critical parts beyond these reduced cyclic life limits may result in part failure, possibly resulting in the release of high-energy debris, which may cause damage to the aeroplane and/or injury to the occupants. To address this potential unsafe condition, EASA issued AD 2014-0249 to require implementation of the reduced cyclic life limits for the affected critical parts, i.e. replacement of each part before the applicable reduced life limit is exceeded, and replacement of those critical parts that have already exceeded the reduced cyclic life limits. Since that AD was issued, it was determined that the affected discs are not eligible for installation on Model RB211-535C-37 engines. In addition, the AD did not explicitly include reference to the necessary recalculation of remaining life for a part that has been transferred from one engine Model to another.</td>
</tr>
</tbody>
</table>
EASA AD No 2015.: 2015-0148

<table>
<thead>
<tr>
<th>ATA 72</th>
<th>Engine – Critical Parts – Identification / Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer(s)</td>
<td>Rolls-Royce plc (RR)</td>
</tr>
<tr>
<td>Applicability</td>
<td>RB211-535E4-37, RB211-535E4-B-37 and RB211-535E4-C-37 engines, all serial numbers (s/n). These engines are known to be installed on, but not limited to, Boeing 757 series aeroplanes.</td>
</tr>
<tr>
<td>Reason</td>
<td>A review of operational flight data has revealed that some RB211-535 engines may have been operated beyond the flight profile (FP) assumed by the operator when establishing the operational limits (life limits) within which the corresponding critical parts are allowed to remain installed. This condition, if not corrected, may lead to critical part failure, possibly resulting in release of high energy debris, damage to the aeroplane and/or injury to the occupants. Prompted by these findings, EASA issued AD 2015-0058, to require identification and removal from service of four specific parts. Subsequently, further information became available in relation to the remaining cyclic life of those parts, and the wider population of parts affected by the same condition. To address this unsafe condition, RR issued Alert Non-Modification Service Bulletin (NMSB) RB.211-72-AH972, which listed all parts that were believed to have been operated beyond the FP assumed by the operator when establishing the applicable operational limits (life limits), instructing operators to calculate the Total Life Consumed and establishing the resulting remaining life for some affected parts, to replace some affected parts within a specified compliance time, and introducing a new flight profile G. The parts previously required by EASA AD 2015-0058 to be removed from service were also listed in RR Alert NMSB RB.211-72-AH972 Revision 1. The original issue of NMSB RB.211-72-AH972 required correction and could therefore not be used. Consequently, EASA issued AD 2015-0103 (later corrected), superseding AD 2015-0058, to require re-assessment of engine operation against the published FP ('A' and 'B'), identification of additional affected parts, re-calculation of cyclic life, and removal from service of parts before exceeding the applicable (re-calculated) cyclic life. Since that AD was issued, it was found that Revision 1 of RR NMSB RB.211-72-AH972 also required correction, particularly in relation to the maximum approved lives applicable for FP 'G' published in Appendix 2 of NMSB RB.211-72-AH972 Revision 1. Revision 1 of the NMSB RB.211-72-AH972 should therefore not be used. In addition, all parts for which the compliance action was to "contact RR" are now subject to a different required action in Revision 2 of NMSB RB.211-72-AH972 (hereafter referred to as ‘the NMSB’ in this AD). For the reasons described above, this AD retains the requirements of EASA AD 2015-0103, which is superseded, but refers to the NMSB for different compliance time(s) and corrective action(s). This AD was republished to correct a typographical error in the Reason.</td>
</tr>
</tbody>
</table>
FAA ADs
AD 2015-05-01

ATA 29 Hydraulics
Counterweights in some hub assemblies of the ram air turbine (RAT) could be understrength and fracture when the RAT is rotating, and that some RAT hub assemblies were delivered with balance washer retention screws that were incorrectly heat-treated, and therefore, susceptible to fracture and cracking.

Manufacturer(s) Boeing Company and Hamilton Sundstrand
Applicability All The Boeing Company Model 757-200, -200PF, -200CB, and -300 series airplanes; and Model 767-200, -300, -300F, and -400ER series airplanes
Reason Requires an inspection to determine the part number and serial number of the RAT hub assembly, and replacing the RAT hub assembly with a new, serviceable, or reworked and re-identified RAT hub assembly if necessary

AD 2015-08-01

ATA 27 Flight Controls
Electrical Relay problems causing unintended lateral oscillations during final approach, just before landing.

Manufacturer(s) The Boeing Company
Applicability The Boeing Company Model 757-200, -200PF, -200CB, and -300 series airplanes
Reason This AD requires, depending on airplane configuration, installing new relays and bracket assemblies, inspecting to ensure that the new relays do not contact adjacent wire bundles, torquing the bracket assembly installation nuts and ground stud nuts, doing bond resistance tests between the bracket assemblies and the terminal lugs on the ground studs, and related investigative and corrective actions if necessary

5 B757 Maintenance Related MOR

The following are technical related extracts from the UK CAA MOR data base related to the B757 family.

The information is protected by the UK CAA and the monthly digest are now strictly controlled by them. It is respectfully requested that with this in mind, the content of the following is not copied or distributed in any way.

B757
Flap fairing damage.

Post test flight into maintenance visit aircraft was met by ground crew, as crew approached aircraft LH wing nr3 aft moveable flap fairing was found to be partially missing on the inboard side, inboard flap fairing panel was observed. This area was approx first 50% of inboard side skin and fitting missing.

CAA Closure:

The root cause of this event could not be determined as the flap fairing damage appears to have been caused by delamination of the fairing skin. This may have been caused by the ingress of moisture into
the laminar layers of the composite material which subsequently froze with the aircraft at altitude. This, however could not be verified or substantiated. Panel p/n 113N1752-55 was replaced during the C check input with the fittings having to be fabricated with Boeing technical assistance and the use of the Spares Material Authorisation License (SMAL) process. This is considered to be an isolated incident with no further recorded events across the fleet. Due to the fact that fairings are difficult to source in the spare market, a complete "ship's set" of flap fairings have been purchased to provide spares in the event of a recurrence of this event.

B757
R/H engine hydraulic pipes from EDP found chafing on adjacent fuel pipes.

RH engine hydraulic pump pipes and P-clip found chafing on adjacent pipework. Damage beyond limits. CAA Closure. One RH engine hydraulic pump pipe replaced, one adjusted and P-clip adjusted. Clearance now satisfactory. Chafing possibly caused by misalignment of the two pipes.

B757
Main wheel assembly aft bearing not installed.

On fitting nr2 main wheel assembly, it was noticed the wheel nut was too far past the locking holes. Wheel was removed to check that spacer was fitted. Upon wheel removal it was noticed the aft bearing was not installed in the MWA with dust seal and circlip fitted. New wheel assy booked out of stores. Goods in to inspect wheel assy.

CAA Closure:

The operator passed the unit back to the overhauler who investigated and found that their internal processes were not robust enough to detect incomplete assemblies. This allowed for the mainwheel to pass through for testing and final inspection without clear instruction. The Process Control procedures and standard work instructions have been revised to strengthen the processes for denoting and marking incomplete-on hold units. The practice of retention testing incomplete units as a time saving method has been suspended. The investigation results have been communicated to all applicable inspectors and mechanics.

B757
Smoke from LH engine on landing due to hydraulic system leak. Aircraft stopped on the runway with fire service in attendance.

Following an uneventful flight and a successful landing, we deployed reverse thrust but only one deployed successfully (left remained Amber). This was called out by the pilot monitoring. Around 6 seconds later we got a message on EICAS telling us that the Left Hydraulic Quantity was low. The status screen showed the left system with 0.36 - it is normally 100

Thrust reverser hydraulic hose found heat damaged by leaking engine bleed (HP2 and HP6) sliding joints. Review being undertaken on duct and hose in service life expectations through Reliability programme.

B757
Flap carriage forward fitting fasteners damaged and missing.

On removal of the L/H flap panel during scheduled maintenance inspection it was noted that the flap fitting that links the O/B L/H flap O/B carriage to the spar was adrift due to the four fasteners being sheared, loose and missing. One fastener was sheared (I/B upper), two fasteners were loose (O/B upper and O/B lower) and one fastener was missing (I/B lower which was found in the flap structure. Non routine card been raised to rectify the defect during aircraft maintenance.

CAA Closure:
The issue of broken and loose carriage support fitting fasteners is a known problem on early B757s. Boeing Service Bulletin SB 57-0012 refers but is not applicable to the subject aircraft by build standard. On further investigation, it was found that the affected flap was at some point removed from an older aircraft and installed on this aircraft, most likely by a previous operator some years ago as no records of flap change are held by the current operator. The event confirmed the need for correct tracking of removable structural components by p/n, s/n and associated applicable Service Bulletins.

B757
Aircraft diverted due to engine malfunction. (RB211)

In the cruise at FL370 a/c speed started to decay rapidly. Auto Throttle appeared to be responding correctly and thrust levers moved as expected.

However speed continued to decay. Thrust levers pushed forward manually and speed continued to delay. Then yoke started to command a roll and at this point on looking at engine gauges it became apparent that the Left engine was only producing 1.5 EPR compared to the Right engine's 1.79. All other parameters were lower on the left than on the right. Power insufficient to maintain speed and altitude so a descent was commenced. It was not until approximately 29000 feet altitude could be attained. Decision made to divert with few available runway and weather conditions.

CAA Closure:

After the aircraft had landed, No1 engine EEC was interrogated i.a.w. AMM and showed fault code 47 - “The P1 signal from the Engine pressure ratio (EPR) transmitter (P1E) has a cross check failure with the P1 signal from the left and right ADC. The fault is external to the unit and can only be shown while the engine is in operation”. The P1 air tube was inspected and found to be in satisfactory condition. The EPR system (P1) pressure test was attempted but the engineer was unable to pressurise the system. The fault was traced to the P1 tube connection on the Fuel Flow Governor (FFG). The tube was tightened i.a.w. AMM and the pressure test repeated, this time without fault. The cause for the loose connection could not be established. As a precaution, the EPR transmitter was also replaced. An EPR function test and high power engine run was performed with both being satisfactory. The removed EPR Transmitter was routed for strip and rectification as required. The strip report found the unit to have cold solder connections, which may have attributed to the fault.

B757
RH wing fuel tank wiring routing found inadequate.

During EWIS inspection of RH wing fuel tank wiring, it was noted that the loom from the right main tank hi-z bussing connector was routed so that it had lost clearance on the inner baffle plate. This had caused chafing of the loom and baffle plate, removing insulation from the loom and paint from the baffle plate. Work order was raised to replace right hand main tank FQIS harnesses and to inspect baffle plate for damage and rectify as required.

B757
Rejected Take-off (RTO) due to generator failure.

Take off thrust set, EICAS auto throttle message appeared, EPR re pressed, then a full top screen of EICAS messages appeared, low speed reject TO carried out, runway vacated, it was worked out that the left generator had failed – a/c returned to stand, in consultation with Maintrol the problem was resolved, after qrh and ddg items covered the a/c was refuelled and we departed with APU running.
B757
Go-around flown due to EICAS trailing edge flap disagree and low fuel message.

EICAS trailing edge flap disagree displayed during deceleration and selection of flap20. Flaps stopped at 15 followed by decision to go around and consult qrh. Radar provided vectors whilst qrh was being actioned. EICAS flap disagree message disappeared during checklist and decision was made to lower flaps on normal system. Landing configuration established early with no further issues. Low fuel EICAS displayed on downwind leg and monitored. Normal landing carried out with 2000kgs fuel remaining.

Supplementary 29/12/14:

Whilst carrying out Fuel config discrete signal test, the FUEL CONFIG light did not illuminate and the LOW FUEL EICAS message did not display. The FQIS processor was re-racked, and the indications then remained on permanently. On reviewing the Tech log fuel figures and fuel quantity indicator, it was apparent that there was 800kg in the right tank, which meant that the indications should be on. The aircraft had been in a low fuel situation with no alert for the crew!

Spoke with the crew last night, informing them that I had raised a report. They said that they did, in fact, get a low fuel warning, which they cancelled on EICAS. However they forgot to mention it to me because they had been preoccupied with the flap disagree problem they experienced on approach. This information does not explain why I couldn’t get the low fuel warning to work. I messed around with the cancel and recall EICAS switches to no avail. Also, I don’t remember seeing the fuel config light during the fuel test, which the EICAS cancel shouldn't have had an effect on. I believe the fuel qty bite and the other EICAS message (fuel qty channel?) didn’t appear either. I haven’t looked at the EICAS cancel latching circuitry, so am not sure what affect this would have had.

B757
R1 door assist bottle fired as door was opened, slide did not inflate!

On stand prior to boarding caterers opened R1 door from the outside. The assist bottle fired and the door opened rapidly. I understand that there were no injuries. The slide did NOT inflate. During subsequent investigation an internal rod was found to be broken.

Supplementary 14/01/14:

Door 1R opened by catering staff using exterior handles as per normal procedures. Door emergency operation assist system 'fired' with door powered open. Exterior door handles stowed themselves during operation. Catering staff unharmed. Door arming mechanism lever was in the 'disarm' position. Door slide did not operate - girt bar was disengaged as per arming lever command. Found internal door mechanism, arming lever to door assist trigger pushrod adrift at arming lever crank, due to broken rod end bearing (remains of which showed heavy corrosion). Internal occurrence report raised.

Manufacturer are aware of corrosion problems with door mechanism eye ends and SB 757-52-0071 was issued to replace eye ends with cres bearings. However, it appears that this SB does not include the arming mechanism rod bearings.

B757
EICAS failure messages and autopilot disconnection during cruise.

In cruise autopilot disconnected. Manual flight achieved by FO (PF) followed by selection of Right autopilot in command. L GEN OFF EICAS message along with CTR L FUEL PUMP, R RECIR FAN and L and R UTILITY BUSSES. QRH actioned and all EICAS messages cleared but Centre Left fuel pump remained switched to off. MEL and Maintrol consulted and flight continued to destination.
Multiple issues during the flight.

Auto speed brake U/S in Tech Log. Both Engine Generators failed after engine starts. Both reset but APU left running. Unable to raise Landing Gear after take off. Override not used as an engineering ferry flight. Right Engine Anti-Ice Valve failed in the open position. Unable to select auto brakes. The engineers at destination knew of the Landing Gear history. The taxi driver even knew that the aircraft had this problem. The ferry crew should have been informed so that Gear Down Ferry fuel calculations and Gear Down performance could have been calculated.

RH fuel spar valve leak.

Whilst carrying out a leak check on the R/H Refuelling valve following defect investigation into fuel migration from R/H to CTR tank, the R/H fuel spar valve was noted to be leaking from the valve body. This could cause a possible in-flight shutdown if both R/H fuel boost pumps failed as the leaking valve would cause low fuel flow and pressure.

R door fails to open in the arm position during routine inspection.

During routine maintenance inspection, R4 door failed to open in armed condition as the trigger on the upper hinge seized which prevented the door from opening.

R/H O/B Flap loose at carriage attachment.

During the routine inspection on a scheduled maintenance input, a gap was noted between the fwd support fitting and flap spar web of the outboard right hand flap at the #8 carriage attachment. The flap was removed for further investigation and all four attachment fasteners were found with varying degrees of play. The fitting was removed and the holes were found to be worn. The mounting holes on the flap were also found to be worn. The mounting bolts are also worn. No-routine card has been raised to rectify the defect during the aircraft maintenance input Work Order.

Engine failed to shut down.

Selected fuel control to cut-off on stand but left engine remained running with fuel flow indicating. After brief discussion with FO shut down engine using fire handle. Tech log annotated.

Captain's oxygen failed to deliver flow on test. Oxygen valve found closed.

Oxygen shut off valve at co-pilot's seat foot sidewall checked and found to be closed off! Valve opened and all masks checked and tested okay. Potentially very serious consequences if a decompression had occurred.

Incorrect Automatic Direction Finding (ADF) antenna part installed due to incorrect Illustrated Parts Catalogue (IPC).

Non Alternate Parts Label Booked Technical Assist was generated when ADF Antenna replaced on aircraft. Further investigation into this issue revealed that the ADF Antenna and ADF Receiver must be matched by manufacturer.
B757
Electrical burning smell followed by EICAS cautions and erratic indications on Captain's ADI.

Passing FL 310 in climb to FL360, electrical burning smell followed by EICAS Cautions: RUDDER RATIO, IAS DISAGREE & MACH TRIM together with Speedtape on Capt's ADI fluctuating wildly up and down. Control handed to Other seat and Auto Pilot disconnected as A/C attempted to level off just above FL310. Climb re-established & F/O's indications were assessed as normal for stage of flight. Right Auto Pilot engaged and burning smell dissipated, Pilot in right seat put on Oxygen Mask as precaution. EICAS Cautions extinguished approx 2 minutes later and Capt's speedtape returned to normal operation. Smell stopped and decision to continue taken with close monitoring of systems using Right Autopilot.

CAA Closure:

The root cause of the event could not be established and has not been repeated since. An autopilot operational test was carried out through the MCDP and an air data computer operational test also carried out. All tests satisfactory. Inspection around and behind the captain's instrument panel carried out for signs of overheating/burning with no defects found. A review of all defects reported on the aircraft since the incident have found nothing similar.

B757
Left engine EICAS indicated vibration. Aircraft returned.

Left engine EICAS indicated N1 vibration of 2.4 on level off at FL380. Maintrol contacted and aircraft returned for a normal landing at 88t.

CAA Closure:

The engine had accumulated 35573fh and 11187cyc. The maintenance visit prior to the air turn back was a VIP reconfiguration which included 6 months tasks and defect rectification. A review of the workpack revealed the only work on the No1 engine (apart from 100 hour and pre-flight servicing checks prior to departure) was a replacement to a lower acoustic panel (7 o'clock ALF) to clear a carried forward inspection requirement. An inspection was carried out to ensure that the forward acoustic panel had not become detached from the fan case and produced damage to the fan blades and causing the vibration. The inspection revealed no movement of the panel and no obvious physical reason for the vibration. An engine run was performed to confirm the level of vibration, resulting in a reading of 1.6 units which was subsequently reduced to 0.6 units after trimming in accordance with the Boeing AMM.

B757
Level 3 corrosion found on straps securing APU inlet.

Whilst performing task which is a ‘GVL’ of the internal area of zone 300, from on top of the stabiliser, looking at the top section of the area I noticed an area of delamination on the APU inlet attaching strap. Further investigation revealed this to be what looked like the milled section of the strap had come away through corrosion. The APU inlet housing was removed and the forward and aft straps were found to be heavily corroded requiring replacement/repair.

B757
Static ports partially blocked.

The aircraft had just come out of maintenance and been positioned for flight. During my walk round I saw that it had been de-iced, as de-icing fluid was still visible on the wings and fuselage and still dripping to the ground. I noticed that the two rearmost port-side static ports (Elevator Feel and Positive Pressure Relief?) were both partially blocked with de-icing fluid which had run over them both. I
reported this to our Engineer and asked him to clear the ports. It transpired that both ports had in fact been partially blocked with small insects (possibly ants) and the de-icing fluid was covering the insects. A rare occurrence as far as I know and I thought worth submitting an ASR to highlight awareness.

B757

Late return of check pack from maintenance input.

Work package from MRO check input, was not returned to company Tech Records / Planning department within the time period required by the interface agreement. Initial review by the MRO of the check pack revealed that the pack may have had signatures and stamps missing from various areas of the pack.

B757

Auto throttle failed during take-off run.

EPR p/b selected to commence take off. A/THR worked initially but failed at around 40kts. This problem had been written up previously and signed off as satisfactory in the ETL. Nevertheless, the eventuality was thoroughly briefed and so the take off was continued setting manual thrust. Uneventful departure.

B757

Fasteners missing from No 8 Slat.

#8 slat had 10 fasteners missing on the lower trailing edge of the slat assy which retained the seal in position. **On further investigation approx 60% of them are incorrectly installed.** We managed to pull 3 further rivets out by hand; looking at these rivets we have ascertained that they are the incorrect diameter fastener and although semi formed have only swelled to the hole size.

B757

Level 2 corrosion found on straps securing APU inlet.

Second Instance of this!

B757

Landing gear warning. Diversion and overweight landing carried out.

On retracting gear, gear disagree and gear doors Eicas. Gear doors discreet light. Airflow noise indicated that nlg doors were not closed. Maintained fl200 and 230 kts while consulting with Maintrol. Diverted for overweight landing. On gear extension all indications normal. On arrival gear pin flag found impeding door mechanism

Supplementary 12/4/15:. On aircraft inspection after arrival, the remains of the NLG Safety Pin lanyard was found wrapped around the R/H cable on the rear face of the NLG oleo & between the same cable & its pulley above the oleo. There was no sign of the safety pin, however when entering the cockpit, only 2 of the 3 undercarriage safety pins were found in the flight deck stowage.

CAA Closure:

Investigation found that after the aircraft had been towed to stand, the engineer had fitted the nose downlock pin prior to tow. Before he got the chance to make a Tech Log entry about the nose pin, he was distracted by the tow team informing him that the anti-collision lights were inoperative. The engineer put down the Tech Log and checked the MEL. Fault finding and maintenance carried out on anti-collision lights. Concurrent activities with refuel, boarding and crew pre-flight were taking place whilst fault finding and rectification of anti-collision lights being undertaken. When aircraft was serviceable, fuelled and boarded, Tech Log was signed and aircraft departed. Nose pin missed during flight deck check, walk around by crew and pushback team. Pin was never removed. Root cause determined as procedures not followed and Tech Log entry not made when gear pins fitted. Numerous contributory factors were identified concerning engineer and flight crew. Unable to determine why the pin was missing on after landing inspection as it should be restrained in place by spring loaded
bearings. Corrective Actions: Maintenance provider immediate issued a Notice to all stations regarding gear pins, to increase awareness of the importance of fitting pins and to be aware of distractions - treating them as 'red flags' and that distractions may be precursors/contributors to a maintenance event. This event will be included in future continuation training. Operator carried out fleet check of all landing gear pins for serviceability. As awareness to line engineers, details of the occurrence will be published in the next edition of engineering newsletter.

B757
EFB (PED) detached from stowage and fell between Captain's seat and side wall during take-off roll.

At Approx 60 kts during takeoff roll, captain's HP tablet detached from cockpit mounting and fell to floor at sidewall left. Both pilots heard loud crashing noise from Captains sidewall at approx 60kts during takeoff roll. Tablet efb detached from left window stowage and fell to ground between seat and sidewall. Captain called "continue". Unit retrieved and re-attached when workload permitted. Velcro fastening had separated- allowing unit to swing down with a jolt sufficient to detach clamp contraption! Nil factor on this occasion but it could have landed on and fouled tiller with wires or bounced into foot well with possible obstruction to rudder movement.

B757
Incorrect installation of crew oxygen cylinder (wire locked and partially closed).

Prior to departure, flight crew noticed that their O2 panels were not testing correctly. On investigation the crew O2 cylinder was found to have the shut-off valve only partially cracked open and wire locked with steel wire locking and a lead seal. Bottle opened fully and wire locked with copper wire.

B757
AMP task deletion lead to equipment cooling centrifugal air cleaner becoming contaminated with dust and dirt due to removal of filter cleaning tasks.

Aircraft returned to stand due "EQPT OVHT" & "EQPT CLG FLOW" EICAS messages and subsequently resulted in a 4 hour 29 minute Technical Delay, which was eventually deferred by a local engineer. On arrival and upon investigation, the Aft E/E Cooling Centrifugal Air Cleaner was found to be clogged with dirt / dust and required a deep clean prior to being re-fitted to the aircraft with no further issues. A subsequent review of the Maintenance Programme revealed the regular cleaning task (applicable to 3 of the fleet only) had been declared 'N/A' against the entire B757 fleet in late 2014 and therefore the scheduled clean for this aircraft was not carried out earlier this year, when it should have been. This can therefore be determined as the root cause for the delay. The remaining two aircraft have since had their Air Cleaners inspected and cleaned via Line Maintenance Work Request.

B757
Multiple shear pin failure on pushback.

Multiple Shear Pin Failure On Pushback. 1550Z First attempt at pushback after 3 m loud bang shear pin broke. Parking brake set ATC informed leader vehicles attended and engineers informed. Towed back on stand ground handling company not answering radio. Engineer inspected nose leg indicated OK to continue. New tow bar fitted. 1610Z Second attempt at pushback same result. ATC informed leader vehicles attended again. Towed back on stand finally managed to get ground handling to reattach airbridge. Engineers carried out nose leg inspection steering function and brake check as specified by engineers, who believe tug crew used undersize incorrect steering pin allowing some pressure to remain in system. Aircraft declared serviceable following inspection.
B757
Hydraulic leak during the flight with associated EICAS warnings. Manual approach and landing carried out with some difficulty.

In the cruise at FL 350 R HYD QTY EICAS. QRH actioned, contacted Maintrol and continued to destination. We monitored the HYD quantity through the rest of the flight noting it continue to drop. Initial warning came on at 0.46 and we landed with 0.17 indicated. As QTY was decreasing in the cruise we checked and planned for R HYD SYS PRESS EICAS and briefed accordingly. The SYS PRESS EICAS illuminated on finals and we actioned QRH. Switching both pumps off resulted in very heavy and difficult to control roll to the right - PF disconnected AP as it was not following LNAV and flew manually with some difficulty. Safe landing carried out.

B757
Loss of LH wing anti ice system in moderate icing.

Anti ice valve failure during approach. This item had been fitted 18 months previously and shows many signs of failure. This unit was fitted 23 May13 and was therefore installed for just 3571:21 hours and 1144 cycles. This is deemed a premature failure, there has only been one other unscheduled removal of this part number in the past 3 years. Reliability continue to monitor component failure rates.

B757 (DHL)
PAN declared and aircraft diverted due to left aileron jammed after take-off.

Aileron jammed after takeoff. Decision made to divert. PAN declared, at 5000ft the Aileron was working again and the A/c landed with no further problems.

B757 (DHL)
PAN declared due to unserviceable weather radar in bad weather.

En-Route, weather radar became unusable. PAN declared due to weather deterioration.

B757 (DHL)
No.2 engine fire protection pipe damaged and holed.

During replacement of a corroded fire protection pipe, found as part of hydraulic pipe and clamp corrosion inspection, a fire protection pipe leading to the No.2 engine was found twisted, causing a hole. The hole and damage were not in view before clamp removal for access to the first corroded pipe. The damaged pipe runs along rear spar of right hand wing, outboard of the main landing gear to wing trailing edge. (before running to the pylon)
A Service Request was open with Boeing for the investigation. There was no flaws in the pipe and the damage is due to being twisted. The damage shows that it had not been damaged for very long, so most likely happened at C-Check.

B757 (DHL)
Aircraft returned after landing gear failed to retract.

After departing from VCE airport RWY 04L the crew, following the procedure, selected the gear up, after that they had GEAR DISAGREE and GEAR DOORS EICAS messages, GEAR DISAGREE and GEAR DOORS orange lights, noise and vibrations. They continued with the procedure and being at a safe altitude they performed the QRH abnormal procedure, which didn't solve the initial problem. So considering the options and the fact that the crew did not know what the exact problem was, they decided to land in VCE. Landed safely. Aircraft released IAW DAEP 57 item 6 for gear down ferry. Following arrival in , the aircraft was positioned in the hanger and jacked. Several gear swings were then carried out IAW AMM 32-32-00
Rev 111 without reproducing the reported indication. However further trouble shooting was carried out and several components on the right main landing gear were identified as suspect and could have caused the original defect. As a result of these findings the right main landing gear up lock assembly and actuator were replaced, along with the down-lock actuator IAW AMM 32-02-16 Rev 111. The associated proximity sensors were adjusted and several more gear swings were conducted without issue.

B757 (DHL)

Left hand de-fuel valve adaptor plate failed bonding check.

During the "C" check, whilst conducting a functional check to ensure the integrity of the electrical bonding path, in accordance with Task card C-28-AWL-25 the left hand de-fuel valve adaptor plate failed the bonding check. The left hand de-fuel adaptor plate/shaft was removed from wing rear spar and inspected, on removal a clear plastic disc was found to be installed between the adaptor plate/shaft and wing structure. Corrosion was also found on the adaptor plate/shaft mating surface and this was found out of limits. The adaptor plate/shaft was replaced in accordance with AMM 28-26-01-01 and a bonding check carried out, the check was satisfactory. Actions: This report was reviewed and investigated by Engineering Management. The inference is that the clear plastic disc was not a normal part of the installation, the IPC would seem to support this, and if this is the case then it is needed to find out when this particular adaptor plate/shaft assembly was installed which will need to be referred to Technical Records.

The IPC gives P/N AZ48-5 or S343T003-9 for the subject adaptor plate/shaft assy; There is no record in TRAX of this part having been previously replaced during DHL Air's ownership of the aircraft.

This check forms part of the Maintenance Planning document for the aircraft C-Check. There have been no previous reports of this nature and the Engineering Department do not deem this occurrence as a reduction in safety margins.

B757 (DHL)

No.1 engine EDP supply shut off valve failed to operate.

Whilst undergoing a base maintenance check in Shannon the Operational Engine Fire Switch Test (Task Card: SF-26-004-00-01), was carried out. During the test the No.1 engine EDP (engine driven pump) supply, SOV (shut off valve) failed to operate to the closed position when the left fire handle was pulled to the Emergency Fire Position. Actions: A base maintenance rectification card was raised and an investigation conducted to verify the nature of the fault. When the EDP supply SOV electrical cannon plug was disconnected, it was found to be very dirty and contaminated with an oily substance. The connector was de-pinned, cleaned, re-pinned, reconnected and the system retested. The result of the re-test was satisfactory with the valve operating correctly. This has been an isolated incident; there have been no other reports of a similar nature affecting this valve. It is accepted that failure of this valve to close in the event of an emergency shut-down of the affected engine could cause a safety concern, but from a maintenance perspective, as long any Maintenance Program prescribed inspections and/or operational checks have been carried out at the appropriate periods, it would be virtually impossible to anticipate or detect a failure of this sort out of phase; it would only come to light during a prescribed check, as in this case, or if an operational failure occurred in service. The task interval (currently every "2C" check) has been deemed too large to capture a defective condition. Therefore, the next six "C" checks will be sampled and the task interval reviewed if there are any findings. Any findings will then be passed onto Boeing. Company Closure Recommendation: This report has been reviewed and, based on the maintenance action carried out, recommended for closure by Engineering Management.
B757
RH wing surge tank access panel leaking and fitted incorrectly.

RH wing surge tank access panel found to be leaking, on inspection panel found to be incorrectly fitted 180 deg out of position, locating lug not sat in alignment. Panel removed and refitted correctly and leak checked satisfactorily. Aircraft has recently been on C Check.

B757
Nr3 engine tacho failure with simultaneous EICAS messages ‘Centre RH Fuel Pump’ and ‘RH Engine Bleed’.

CENTRE RIGHT FUEL PUMP and RIGHT ENG BLEED EICAS messages appeared simultaneously. QRH actioned for right engine bleed and then centre right fuel pump. ECS messages showed R ENG VIBE BITE, L ENG SURGE BITE and ANTISKID/AUTOBREAK. R eng n3 noted to be indicating zero. Maintrol contacted by sat phone with the suspicion that we had a R eng n3 tacho failure. Maintrol confirmed the failure, and stated there should be no further implications to affect us, so it was decided to remain at fl360 and continue.

B757
GPU panel was found open and damaged during walk around check on arrival.

GPU Panel Found Open And Damaged On Arrival. On arrival, when performing walk around, was verified that the GPU panel was open. Captain was informed and when he tried to close the panel, was found that it was damaged. Maintenance was called to close the panel and protect it.

B757
Trailing edge flap disagree message.

Descending through 6000ft for visual approach, F.O P.F, flap 5, 170kts, gear down, speed brakes in use, flap 20 selected. Trailing edge flap disagree message annunciated. Flap is indicated. A/C returned to 6000ft to hold, QRH actioned, LDG distance checked and uneventful flap 20 LDG carried out, auto 3 full reverse.

B757
Evidence of arcing found on RH wing landing light panel. Incorrect installation of landing light terminal/switch.

ANTI-COLLISION/ WING LANDING LIGHT PANEL REPLACED DUE TO RIGHT WING LANDING LIGHT STAYING ILLUMINATED WHEN SWITCHED OFF. WHEN PANEL WAS REMOVED, IT WAS NOTED THAT THE SWITCH FOR THE LEFT WING LANDING LIGHT WAS MISSING A SCREW HOLDING TERMINAL TO CONTACT. THIS TERMINAL HAD WELDED TO SWITCH DUE TO ARCING, THIS WAS THE ONLY REASON THE SWITCH WAS WORKING. PANEL FITTED TO AIRCRAFT APRIL 2015. NO EVIDENCE OF MISSING SCREW FOUND.

B757
Cabin window fitted wrong way around!

ON MORNING PRE DEPARTURE WALKROUND ENGINEER NOTICED 2ND FROM AFT CABIN WINDOW ON RHS OF AIRCRAFT DID NOT APPEAR TO BE SITTING CORRECTLY IN THE WINDOW FRAME. ON CLOSER INSPECTION THE WINDOW WAS RECESSION INTO THE FUSELAGE AND APPEARED TO HAVE BEEN FITTED THE WRONG WAY WROUND, THE OUTER PANE BEING INSTALLED INSIDE OUT. THE AIRCRAFT WAS GROUNDED AND THE FLIGHT OPERATED ON THE STANDBY SPARE AIRCRAFT. ROW 41DEF WINDOW WAS SUBSEQUENTLY REMOVED AND CONFIRMED TO HAVE BEEN INCORRECTLY FITTED AND A NEW WINDOW ASSEMBLY (OUTER AND MIDDLE PANE) WAS FITTED WITH NO FURTHER DEFECTS NOTED.
B757(DHL)
Five cloths were found under the inboard lower acoustic panel.
During maintenance action for boroscope inspection, 5 cloths were found under the inboard lower acoustic panel. The five cloths have a lot of burning marks, one with burning holes.

B757(DHL)
Part of HPT blade shroud material found missing during borescope inspection.
During Boro Insp. Found: HPT Blades Shroud platform Materials Missing- Concave Interlock corner. Fining 2 adjacent Blades with missing Material found IAWAMM 72-00-00-296-117-r0 (1)b;3;b. Subsequently, it was decided to change the left engine.

B757(DHL)
Fumes from both air conditioning packs in flight deck. Oxygen masks donned.
Cockpit temperature in the cruise became quite cold, and temp increased to the A position. Initial descent then initiated. Strong smell of 'glue/fumes' engulfed the flight deck. Temperature returned to cold and fumes dissipated. Crew then carried out fault diagnostics. Maintenance Action: Pall filter assembly replaced iaw Supplement Manual S21 Tec-0315 Issue 31. APU pack purge performed iaw EC SIN 24-00-0001 REV 01 and AMM 21-00-01-862-005 REV 113. An engine ground run with both packs ON was then performed iaw AMM 71-00-00/201 REV 113 with no smell present. Closure Recommendation: The aircraft has since operated with no repeat of the defect and, therefore, based on the maintenance actions carried out above, this MOR is recommended for closure by Engineering Management. Trends will continue to be monitored at the bi-monthly safety meetings. The Flight Crew are thanked for raising this report.

B757(DHL)
Cabin Alt Warning.
Just after reaching TOC at FL 350 the cabin altitude warning annunciated. The cabin altitude was indicating just in excess of 10000ft with a rate of climb of about 200' per minute and the outflow valve was fully closed. Oxygen masks were donned and a descent initiated. Prior to T/O OSIC had been noted on the flight deck and the left pack had been selected off, during the T/O roll the left engine bleed had annunciacted and on actioning the QRH in the climb the left engine bleed had consequently been turned off. Therefore during the descent the left engine bleed and the left pack were re selected on and immediately the cabin started to descend at about 300' per minute. The ac was levelled at FL 230 when the cabin altitude warning extinguished. The predicted fuel at destination was checked, assuming cruise at FL230, the remaining oxygen was also checked and the decision to continue to the original destination was made as there was now no evidence of the original OSIC. As the cabin altitude now appeared to be controlling normally during the cruise the ac was climbed to FL310.

Engineering performed Cabin Alt Syst 2 BITE Test iaw TSM 802, nil flight faults stored. Sys reset satis - please report further if required.

B757(DHL)
Incorrect bolts found fitted to flight deck 1R window.
Pilot reports wind noise from window 1R. During Trouble shooting crew find window 1R Sealant and screws loosen. After window removal found wrong screws installed. IAW. IPC 56-11-01-05 Bolts that should be installed now installed. Removed screws are in DUTY Manager Office.
B757
Rejected take-off due to No 1 engine very slow to accelerate to commanded EPR.

On Take Off Engine No1 very slow to accelerate to commanded EPR. Take Off rejected at 65kts, returned to stand for further investigation.

B757
Left Bus failure - Left Generator failure after take off.

Shortly after take off CM1 screens blanked and usual indications of Left AC bus failure including L Gen Off. Departure continued with limited instrumentation whilst QRH actioned to successfully restore L Gen and L Bus. All indications now normal (status messages ovbd ex val open and T -R unit remained) flight continued

B757
Repeat defect - failure of left generator.

Just after selecting gear up, the left generator failed. With the left AC bus off. This led to loss of flap gauge left flight director left route, collapsed/compressed engine indications on the lower screen. The equipment cooling also failed. The F/O was flying, and climbed the AC away. We selected the flaps in, but were unsure if they had retracted (perhaps a thought exacerbated by a hydraulic leak on the ground). We continued the climb to FL150 with the right autopilot engaged. Radar lost us as the transponder had also failed. I managed to reset the left generator
When we climbed through MSA, which brought everything back. A number of status messages remained. These were erased apart from T-R unit (a no go item). With this in mind, I called maintrol on HF. They informed me that this had happened a few times on this AC. On investigating in the tech log, the same fault occurred on 21 July and 25 July. I would suggest that this should be fixed, rather than carried.

You will no doubt be aware that the DHL fleet will shortly be enlarged to include B757 aircraft powered by PW2000 Engines. This will obviously pose some challenges as many of you may not have worked this engine for some time or indeed have only recently received your PW2000 training. In addition to having different engines these aircraft will differ substantially in several other respects notably:

a) A new cargo door Installation (ATA 52)
b) An upgraded “Flat Panel” flight deck. (ATA 31/34)

The cargo conversion modification also involves other smaller but never the less significant changes to existing aircraft systems; these can be found under ATA chapters 21, 25, 26, 27, 28, 31, 38, 56 and 57

To familiarise yourself with the new Cargo Door installation, the upgraded “Flat Panel” Flight Deck and the other systems changes please read the related file in the “useful Information” folder attached to this Continuation Training package.
7, REMINDER – Altitude Global Ltd - ENGINEERING BULLETIN - B757-32-001

Although released 13/11/14 all engineers are reminded of the importance of this Engineering Bulletin which highlights the dangers of “Incorrect B757 Nose Wheel Installation”

Brief Synopsis and Reason for issue

During a B757 post flight inspection, excessive clearance was found between the NLG Inner Axle Sleeve and the Nose Wheel inner Bearing retaining ring, indicating a potential incorrect Wheel installation. The Axle Nut “lock bolts” had been correctly installed. Subsequent investigation revealed that during Nose Wheel fitment it is possible for the Tanged Washer to drop into the Axle thread “undercut” and yet still permit the Axle Nut to be correctly torque loaded followed by the installation of the two Axle Nut lock bolts. The action of the incorrect location of the Tanged Washer is crucial in preventing an erroneous Torque loading figure and the subsequent loosening of the Wheel in service.

Action

Boeing draws your attention to this potential pit fall by highlighting the following AMM references to prevent similar errors:

Section 32, Subtask 32-45-02-424-036

Section 32, Subtask 32-45-02-424-037

CAUTION: SHAKE THE TYRE TO ENSURE THE PROPER INSTALLATION. A LOOSE TYRE MAY INDICATE THE WASHER IS NOT AGAINST THE BEARING OR THAT THE WASHER IS MISSING.

The Photograph below identifies the “Undercut” relative to the Axle Thread which may permit incorrect location of the Tanged Washer during Nose Wheel Installation.
8 Civil Aviation Authority SAFETY NOTICE
Number: SN–2015/005

Fuel Shutoff Valve – Mandatory Actions on Boeing Aircraft

This Safety Notice contains recommendations regarding operational safety. Recipients must ensure that this Notice is copied to all members of their staff who need to take appropriate action or who may have an interest in the information (including any ‘in-house’ or contracted maintenance organisations and relevant outside contractors).

<table>
<thead>
<tr>
<th>Applicability: Operators of Boeing 737, 757, 767, 777, and 787 aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerodromes:</td>
</tr>
<tr>
<td>Air Traffic:</td>
</tr>
<tr>
<td>Airspace:</td>
</tr>
<tr>
<td>Airworthiness:</td>
</tr>
<tr>
<td>Flight Operations:</td>
</tr>
<tr>
<td>Licensed/Unlicensed Personnel:</td>
</tr>
</tbody>
</table>

1 Introduction
1.1 The FAA has issued an Airworthiness Directive (AD) addressing a potential unsafe condition affecting fuel shutoff valves installed on the following Boeing aircraft: B737, B757, B767, B777, which require a test and/or inspection; and on the fuel shutoff valve actuators on the B787 which require replacement, test and/or inspection. These ADs have been adopted by EASA and may be downloaded from the EASA AD webpage:

 AD 2015-19-01 B777
 AD 2015-19-02 B767
 AD 2015-19-03 B737
 AD 2015-19-04 B757
 AD 2015-19-09 B787

1.2 This Safety Notice (SN) provides the process which will enable operators to utilise Flight Crew to carry out the tasks that are required on a daily basis, where this is permitted in the applicable AD.

2 Action to be Taken
2.1 The Continuing Airworthiness Management Organisation (CAMO) for operators of Boeing B737, B757, B767, B777, B787 aircraft should immediately make themselves aware of the relevant AD and establish whether it affects any of their aircraft.

2.2 For those aircraft where the AD requires daily checks to be performed, operators have an option for this to be accomplished by either engineering or by Flight Crew. Where an operator decides that the daily checks will be accomplished by engineering then each check must be
correctly actioned and recorded to demonstrate compliance with the AD. Where an operator decides that the daily checks will be accomplished by the Flight Crew then the following procedure must be implemented:

a. The Post Holder for the CAMO and the Post Holder for Flight Operations for the AOC holder should agree on the tasks to be performed by the Flight Crew.
b. The operation check detailed in the AD must be documented in the Operations Manual, along with a reference to the AD number.
c. The method of compliance with this specific AD requires that operational actions are approved by the CAA. Amendments to the Operations Manual must be submitted to your assigned CAA Flight Operations Inspector (FOI) for approval. The FOI will verify that the relevant checks and task accomplishment periods have been correctly transcribed into the Operations Manual, before approving the amended Operations Manual.
d. When an Operator has an approved process for the Flight Crew to action the checks specified in the ADs, they are required to record any failure in the aircraft technical log; recording of the satisfactory accomplishment of the check will not be required. All defects must be rectified in accordance with the requirements of the applicable AD.

3 Queries

3.1 Any queries or requests for further guidance as a result of this communication should be addressed to ISPOperationsManagementTeam@caa.co.uk.

4 Cancellation

4.1 This Safety Notice will remain in force until further notice.

END
9 Main Cargo Door B757 Precision Conversions – Bleed Procedure

Since January 2013, Tasman Cargo Airlines has experienced 3 cancellations due to Main Cargo Door malfunctions and maintenance errors. One instance resulted in an Engineer having his hand crushed by the Lock-Pin Gang Bar.

This Maintenance Tip is promulgated to amplify the procedures identified in Precision Conversions B757-200PCF Maintenance Manual (PC-0118-06) Chapter: 52-30-00, pg.201, Para.2 “Maintenance Instructions” – specifically, bleeding air from the main cargo door hydraulic system.

Note: Significant damage to equipment and/or personnel may occur if the hydraulic system is disturbed and not completely bled in accordance with MM 52-30-00
Following maintenance on the Main Cargo Door Hydraulic System (and in particular, when air has been introduced), please ensure Bleed Procedures per MM 52-30-00 is carried out in accordance with reference to the following:

Note: This procedure commences with the OPEN sequence, and terminates with the CLOSE sequence.
Ensure that the Hyd Reservoir has sufficient fluid after each bleed point.

1. Ensure Main Cargo Door is in the closed (or fully lowered) position.
2. Bleed the system using the Hand Pump only
3. Start with the Pressure Filter
Crack the downstream union and pump until all air bubbles are removed, and then expel a further 100/200ml of fluid. Tighten the fitting.
4. Follow the same procedure (in order) on the:

 a. OPEN sequence
 i. Selector Valve
 ii. Vent Door Actuator
 iii. Position.1 1200psi Selector Valve
 iv. Collective Locking Actuator
 v. Position.2 1600psi Selector Valve
 vi. Latch Actuator
 vii. Position.3 2000psi Selector Valve
 viii. Door Actuator Holding Valve
 ix. LH & RH Lift Actuators

 Then;
 b. CLOSE sequence
 i. LH & RH Lift Actuators
 ii. Position.4 2000psi Selector Valve
 iii. Latch Actuator
 iv. Position.5 2400psi Selector Valve
 v. Piloted Check Valve (Locking Actuator)
 vi. Collective Locking Actuator
 vii. Position.6 2800psi Sequence Valve
 viii. Piloted Check Valve (Vent Door)
 ix. Vent Door Actuator
 x. Return Filter Assembly
 xi. Hydraulic Reservoir Inlet

This sequence of events can conceivably take two (2) to three (3) hours.
Once complete, let the door stand for 30min, and then – with caution – fully open, then close and lock the Main Cargo Door using the Hand Pump – checking at all times for smooth operation.
If this is satisfactory, using the Hand Pump again - unlock the Main Cargo Door and open sufficiently to clear the airframe. Stow the Hand Pump, Fully Open, then Close and Lock using Electric Hydraulic System, again checking for smooth operation.

Repeat the electric operation full open and full closed ten (10) cycles to ensure all air is bled into the reservoir. If squealing sounds are heard during the final locking or initial unlocking on final cycle, wait thirty (30) minutes to allow pump to cool and repeat for ten (10) full cycles.

Raise door to canopy position and monitor. If the door drops from canopy over a thirty (30) minute period, air is still present in the system. Repeat electric door cycle ten full cycles. (Monitor Pump temperature)
Main Cargo Door
Hydraulic System (sequential) Bleed Points – Door CLOSE Sequence

Step 4b.i
Door Actuators

Step 4b.ii
2000 psi Sequence Valve

Step 4b.iii
Latch (Torque Tube) Actuator

Step 4b.iv
2400 psi Sequence Valve

Step 4b.v
Piloted Check Valve

Step 4b.vi
Collective Locking Actuator

Step 4b.vii
2800 psi Sequence Valve

Step 4b.viii
Piloted Check Valve

Step 4b.ix
Vent Door Actuator

Step 4b.x
Return Filter

Step 4b.xi
Reservoir Inlet